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Abstract

We have observed transverse excitation
of BEC in an optical trap generated by a
single red-detuned Gaussian laser beam.

The BEC was created in amagnetic trap,
and was transferred into optical trap.

Some possible mechanisms for the
excitation are discussed.

8'Rb stateis F=2, mF=2



Experimental procedure 1
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BEC was created in a Magnetic Trap.
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Intensity of laser beam was gradually increased.

Resonant beam

Pure optical trapping.

Time of Flight, and absorption Y O
Imaging.



Optical Trap Setup




Experimental data ~ Time evolutionintrap 1

Parameter
Time of Fright 17ms, Laser Power ~11mW, beam waist 10.5 um, Ramp up time 300ms
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Pure optical trap resulted
In thistransverse
T BRI excl tatiC)n, without any

# . additional perturbation.




Experimental data ~ Time evolutionin trap 2
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Experimental procedure 2
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BEC iscreated in MT ®
Ramp Up crossed-FORT
Pure crossed-FORT trapping O

Pure single-FORT trapping
Time of Flight and absorption imaging



Experimental data2

Trapp| ng by crossed FORT Crossed trap—tl me 300ms
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Far Off Resonance optical dipoleforce Trap

(FORT)
For regi—detgn] ng the fc_)cus point IS the Parameter
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The feature of optical potential with gravity
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Magnetic Trap(MT)
W =211 x 155 Hz

Optical Trap (OT)

) y=2T[ x 289 Hz

W X:2n x 275 Hz

W ;=21 % 15 Hz W =21 % 2.30Hz

List1  Trap frequency

Figl Potentia profile of the optical trap
including gravity interaction.

Fig2 Cross section at Z=0 and 1000um.

Fig3 For focused Gaussian beam, radial trap
frequency depends on z position.

Listl Axial trap frequency of MT is
larger than OT. After BECis
transferred into optical trap,

BEC spreads in the axial direction.



Model O

1 When MT is switched off, BEC is perturbed by magnetic field

In the experimental procedure2, crossed-FORT trap
===) timeistaken long enough. However we observed
transverse excitation.

FORT beam oscillates when BEC is trapped, therefore
BEC is oscillated.

FORT beam may oscillate. However in this model,
===> jt seemsdifficult to explain why sinusoidal
transverse excitation is observed.



Moddl 1

_, It MTand OT axisare not parallel, BEC

e MAY start to oscillate when MT is off.

rorT Becausetheradial trap-frequency
depends on the z-position, the oscillation

phase may also depend on the position.

Experimental procedure 2. When the crossed-FORT trap
time is taken long enough, we can assume that the direction of
BEC and single-FORT axis are parallel. Therefore according to
model 1, transverse excitation does not occur in this case.
However, we have observed transverse excitation even for
crossed-FORT case.

Thisresult indicates that the potential profile of single-FORT
IS important for transverse excitation.



Modedl 2
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This figure shows the minimum point of the potential in X

direction as afunction of z-position. For afocused beam, the
minimum line of potential isnot parallel to z-axis.

Does this effect cause transverse excitation when BEC
propagates along the minimum line?

cf. A.E.Leanhardt, et al.PRL 89. 0404 01 (2002).



Model 3~ part 1

Let’s consider change of the potential in the experimental process
minimum point of potential at Z=0

Please refer to Experimental procedure 1 TX 7
>
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After ramp up, M T was suddenly switched off. At thistime, minimum

point is shifted from B to C. This means BEC may have potential
energy and oscillate in OT.

This shift was estimated to be 2~4um and it is consistent with
the excitation amplitude.



Model 3 ~ part 2

Z BEC propagates in z-direction
> while oscillating in x-direction.
_> v

Minimum line Because the radial tre_tp-frequency
----------------------------- | depends on the z-position, the
oscillation phase may also depend
on the position (asin model 1).

X
In this model, because the potential hasline /\ l
symmetry, the transverse excitation also must Z
have line symmetry. However, observed 7 v \7 v
transverse excitation does not have line 4

Ssymmetry.



